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A Lagrangian method for the Shallow Water equations in one dimension is presented. The 
method is based on the following idea. Place N points on a line to represent the fluid. Each 
point represents all the fluid that is closer to this point than to any other. This partitions the 
line into intervals. The principle of Least Action yields a set of difference equations which can 
be easily solved at each time step to give new values for the height and velocity of the fluid 
particles in each interval. The points are then moved to their new locations and the intervals 
reconstructed. In the event that two points get too close to each other, consider the points to 
have collided. The collision is treated as an inelastic collision and the two points are merged 
into one, according to certain conservation laws. It is then possible to handle flows with 
shocks by modelling a shock as a collision between two particles. That is, a shock is thought 
of as one fluid particle overtaking another one and colliding with it. The results of this method 
on the Dam-Breaking problem are presented. The solution is compared to the exact solution 
and to a solution by the Random Choice Method. 

1. 1NTRo~ucT10N 

In this paper we introduce a new numerical method for the treatment of the 
shallow water equations. The method is based on a Lagrangian representation of the 
fluid. That is, the coordinates, velocities and height of N fluid markers are stored and 
updated at each time step. 

The main advantage of a Lagrangian formulation is that the conservation 
equations take their simplest form. In particular, the nonlinear convection terms 
U . VU do not appear explicitly. 

Despite this advantage, the Lagrangian approach has a fundamental difficulty 
associated with large deformations generated by typical fluid motions. Fluid particles 
which are close together at time t = 0 may become farther and farther apart as time 
evolves. Conversely, fluid particles that are far apart may come closer together and 
even collide. A computational mesh that moves with the fluid becomes increasingly 
distorted, and the difference approximations to derivatives become worse and worse. 

Various Lagrangian schemes are described in the literature. One of the most 
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successful is the Particle in Cell Method (PIC) [7]. In this method, the flow is 
represented by large numbers of particles carrying mass, momentum, and energy. The 
particles are accelerated by a pressure gradient determined by counting particles in a 
lixed mesh. 

A Lagrangian scheme that deals with the difficulty of a deforming mesh is the 
ALE Technique [8]. In this method a computational mesh deforms with the fluid, but 
the deformation is opposed by a relaxation process which tends to preserve the 
regularity of the mesh. 

Another approach is the Free Lagrangian Method proposed by Peskin [ 111 and 
others 14, 161. The Free Lagrangian Method deals will the problem of large defor- 
mation in a different way. At each time step, the fluid markers find their natural 
neighbors. This is accomplished by assigning to each fluid marker the region of space 
consisting of points which are closer to that marker than to any other. Thus the fluid 
markers generate a natural partition of the domain into convex polygons, if the 
domain is two-dimensional, or into convex polyhedra, if its is three dimensional. The 
mesh so generated is known as a Voronoi mesh [ 171. For this reason, the fluid 
markers will be called generating points. 

Two generating points are considered neighbors if their polyhedra have a face of 
nonzero area in common. As the generating points move, the polyhedra deform 
continuously, but a given generating point is free to lose old neighbors and acquire 
new ones. These changes in structure occur continuously in the following sense. Let 
A, be the area of the face in common between polyhedraj and k when there is such a 
face. Otherwise, set A, = 0. Then Aj, is a continuous function of the coordinates of 
the generating points. Since the fluid markers find their natural neighbors at each 
time step, there is no tendency for the distance between neighbors to increase with 
time, and the difficulty of large deformations is overcome. 

Peskin has implemented a Free Lagrangian Method for the case of plane incom- 
pressible flow, while Dukowicz and Trease have applied such methods to 
compressible flow problems [4, 161. This method also is naturally suited to the 
shallow water equations. That is the subject of the present work. Each column of 
fluid is made up of a polygonal base with area Aj and a height Hi. The constraint of 
incompressibility is that the total mass of an element mk =pA,H, = constant, where 
p = density. Thus the height is free to adjust as long as the base compensates for the 
changes in height. The shallow water theory (Stoker [ 1.51) tells us that the motion of 
fluid in a cell is determined by the motion of fluid in the polygonal base. Thus the 
motion is essentially two dimensional. This allows us to write Lagrange’s equations 
of motion for the generating points. 

In one dimension the equations simplify considerably. This discussion is presented 
in the present paper as a prelude to the various generalizations to be discussed in the 
following paper (Augenbaum (21). In the first few sections we derive the discrete 
equations (Sections 2 and 3) and then compare them to a more standard derivation, 
thus establishing the second-order spatial accuracy of the method in Lagrangian coor- 
dinates (Section 5). We then modify the scheme to handle the case of shocks by 
treating a shock as a collision between generating points. When two generating points 
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get too close to each other we treat them as if an inelastic collision has occured and 
merge the two points into one averaged point according to certain conservation laws. 
This procedure provides the dissipation of energy that is caused by the shock 
(Section 6). The loss of resolution that results from this procedure is appropriate to 
the dissipative nature of shocks. Finally, we present the results of this method on the 
dam-breaking problem (Section 9). 

In the following paper [2] we generalize the method to the case of flow on a 
rotating sphere. Other Lagrangian methods that deal with the problem of large defor- 
mations can be found in Fritts and Boris [5]. 

2. DISCRETE SHALLOW WATER EQUATIONS 
IN ONE SPACE DIMENSION FOR SHOCK-FREE FLOWS 

In this section we describe the discrete approximation to the shallow water 
equations in one space dimension. These equations are derived in Stoker [S ]. We 
recall them for the readers convenience, 

where 

and 

h = h(x, t) = height of fluid, 

u = u(x, t) = horizontal velocity, 

g = gravitation constant. 

We remark that we follow the usual convention of using small letters to denote 
Eulerian variables and capital letters to denote Lagrangian variables. 

Assume that we have an interval on the line a < x < b containing fluid with a free 
surface height h(x) such that max[h(x)] & b -a. We then place N fluid markers X, 
such that 

acX,cX,<... <Xk<Xk+,<... <X,<b. 

In this way we partition the interval (a, b) into smaller intervals I, so that each 
particle (fluid marker), X,, represents all the fluid that is closer to X, than to any 
other fluid point. 
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Each interval Ik is given by the formula 

I, = 
i 

X k-l +x, Xk +xk+l 
2 ’ 2 ’ 

l<k<N. 

The boundary intervals are given by 

For purposes of generalization to higher dimensions it is worth noting that 

Ik= fi {X:XE (o,6) and IX-Xkl<IX-XjI}. 
j=l 
j#k 

To each interval, Zk, we associate its length L,, and a height H,. The area of any 
interval is given by 

A, = LkHk 

and therefore its mass is 

mk = @kffk)> (2.2) 

where p = density. We remark that the units we use here are m = mass/length and 
p = mass/vol. 

Equations of motion. First, since we are concerned with the time evolution of the 
fluid particles, all the quantities defined above are functions of time. 

Incompressibility. Since the fluid is incompressible we have 

mj(t) = pLj(t) H,(t) = const = mj(0) = mj. (2.3) 

This implicitly defines Hj as a function of (X1,..., X,v), i.e., Hj = mj/pLj. Recall that 
the Lj are determined by (X, ,..., X,). 

Lagrangian Dynamics. We construct a Lagrangian for the system of particles Xi 
and derive the equations of motion as the minimization of the action integral subject 
to fixed initial and final values. This will yield a set of differential equations for the 
particle trajectories which can then be solved for arbitrary initial conditions. 

To derive a formula for the kinetic energy, we need the Shallow Water assumption. 
The Shallow Water assumption is that the fluid motion is essentially horizontal and 
that we can therefore ignore the velocity in the vertical direction, i.e., V2 < U2. Thus 
the kinetic energy of any Xj can be written 
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The kinetic energy of the system is given by 

“7 1 1 N 
KE=z -mjUj=--rnj [ 1 dx,’ 

j=l 2 2 ,e, dt ’ 

where 

z= uj. 

We can now derive an expression for the potential energy. We have 

PE= b !’ gh’(x) dx, 
a 

(2.4) 

(2.5) 

P-6) 

where g is the gravitation constant and p = 1. Equation (2.6) can be discretized as 

PE = j 5 gHj(HjLj) = f 5 gHjmj using (2.3). 
j=l j=1 

The Lagrangian L = KE - PE is given by 

(2.7) 

Recall that the equations of motion of a mechanical system are derived by 
minimizing I = 5: L dt subject to given initial and final values Xi(O) and Xj(T) [6]. 
Let 

W-9 

We can now minimize I using the relation Hj = mj/Lj. A necessary condition for a 
minimum is that 

6I=S lGJoT$l mj [ (2)‘- gHj] dt/ ~0, 

where 

Hi = mg/Lj. (2.9b) 

Integrate (2.9a) by parts and use &X,(O) = 6X,(T) = 0. We have 

(2.9a) 

1 
dXj dt = 0. (2.10) 
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Since SXj is arbitrary, we have, for each j, 

245 

(2.11) 

We note that aHk/8Xj makes sense, since the H, are functions of (X,, ..., X,} 
through the relationship H, = m$‘L, and L, = (X,, 1 - X& ,)/2. 

In fact, we can put Eq. (2.11) into a form that will be more suitable for our 
numerical method. Using (2.9b) L,H, = rni, we get 

aLk 
ax.Hk+Lk 

aHk 
-= 0. 

J aXj 

Therefore 

aHk Hk aLk 
-=---a 
ax, L, ax, 

Substituting (2.12) into (2.11) we end up with 

(2.12) 

(2.13) 

In summary, the spatially discrete equations of motion are 

mjo =LjHj Conservation of Mass, (2.14a) 

Conservation of Momentum. (2.14b) 

3. FORMULAS FOR DERIVATIVES aL,/aX, 

We now derive a simple formula for the derivatives aL,/aX,. If we ignore 
boundary points, for the moment, we recall the formula for I,, 

Zk = X k-l +xk xk +Xk+, 

2 ’ 2 - (3.1) 
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Therefore 

a 
Xl x2 ‘N-1 *N 

FIG. 3.1. Boundary and neighboring intervals. 

L =xk+xk+l Xk--l +x, xk+, -x,-, 
k 2 - 2 = 2 * 

Thus 

3L, 1 -=- 
aAc, 2 ’ 

j=k+ 1, 

1 
=--2 2 

j=k- 1, 

=o otherwise. 

1 b 

(3.2) 

(3.3) 

We can now modify eqs. (3.3) for boundary points. (The boundary points are 
shown in Fig. 3.1). 
The lengths of the boundary intervals are given by 

L =xl+x2 --a X AS-, t-x, 
I 2 ’ 

L,ti=b- 2 . 

Equations (3.3) become 

dL, 1 -=- 
axj 2 ’ 

j= 1, 2, 

=o otherwise, 

WV 1 

-G-=--’ 2 
j=N- l,N, 

=o otherwise. 

(3.4) 

(3.5) 

4. SUMMARY OF SPATIALLY DISCRETE EQUATIONS OF MOTION 

If we use the formulas (3.3~(3.5) in Eqs. (2.14a, b) we arrive at the following, 
spatially discrete, equations of motion: 
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Conservation of mass. 

my= 
( 
x,+x, 

2 - 
a H 

1 
19 

m:= 2<j<N-1, 

N’ (4.1) 

Conservation of momentum. 

m~?$.?-=$ y’yH’), 

oduj g HjZ-,-Hj+l 
mjdt=T ( 1 2 ’ 

2<j<N-1, 

d UN g Hi-,-H,: 
m+=y 

( ) 2 * 

Move points with local fluid velocity. 

(4.2) 

dX. 
J= uj, 
dt 

l,<j<N. (4.3) 

5. RELATION OF SPATIALLY DISCRETE EQUATIONS TO DISCRETE 
VERSION OF SHALLOW WATER EQUATIONS IN LACRANGIAN FORM 

In this section we show that the spatially discrete equations derived above, 
Eqs. (4.1)-(4.3), are equivalent to a centered second order accurate finite difference 
scheme for the shallow water equations in Lagrangian coordinates. We are indebted 
to Peter Lax for the suggestion that our numerical method should be regarded as a 
difference scheme in Lagrangian coordinates. This establishes the second order 
accuracy of the spatial discretization of the polygon method in the continuous 
(shock-free) regions of the flow. 

We remark that this proof does not generalize to higher dimensions, where the 
order of accuracy is not known [2]. 

In Eulerian form, the one dimensional shallow water equations are 

(5.la) 

(5. lb) 
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h = h(x, t), 

24 = u(x, t) and g = constant. 

An alternate form of (5.1) is 

$+h$=O, (5.2a) 

(5.2b) 

We now proceed to put (5.2) into Lagrangian form. 
In Lagrangian form, our independent variables are a and t, where a marks a 

particular fluid element. The flow is described by the family of mappings X(a, t) and 
by the height Z-Z(a, t). Let 

U(a, t) = g (a, t), 

The connection with the Eulerian variables u and h is that 

g (a, t> = &w, t>,4 

H(a, t) = h(X(u, t), t). 

Note that 

=o by (5.2a). 

(5.3) 

(5.4a) 

(5.4b) 
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so 

H$(u) (5.5) 

independent of t. This is the Lagrangian form of the continuity equation. 
We note that ~(a) is the mass-density with respect to the measure da since 

&W da = k;H@, t> ax+, f>/aa da = Jx(a,,t) x(a2~‘) h(x, t) dx = mass of the fluid between 
X(u, , t) and X(u,, t). To transform (5.2b) to Lagrangian form, multiply both sides by 
3X/&z and use the chain rule to get 

ax a2x g wf2) = o 
-2+=7 . au at 

Multiply (5.6) by H and use (5.5); we get 

(5.6) 

(5.7) 

In summary, the Lagrangian form of the I-D Shallow Water Equations are 

f@, t) = lu(~>lW/~~> Conservation of Mass, (5.8a) 

au g W2) 
&)Sr+Ta= 

o Conservation of Momentum, (5.8b) 

dX 
-= 
dt 

u. (5.8~) 

We now spatially discretize (5.8). Let uk =jAu and Xj = X(uj, t), 
Uj = U(uj, t) Hi = H(uj, t). We use a centered, second-order accurate, difference for 
a/&l 

a(H’) 
- = 

Hi’+ 1 - Hj’- 1 
au j  2Au ’ 

Then (5.8) becomes 

Hj=,uj 

dXj 
dt= uj. 

(5.9) 

(5.10a) 

(5.10b) 

(5.1Oc) 
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The Voronoi Polygon Method, away from boundary points, is (4.1 k(4.3) 

m,=~, (xj+l-xj-l) 
J J 2 ’ 

H;+l-H;_l =. 
2 1 7 

dX. 
I= uj. 
dt 

(5.1 la) 

(5.1 lb) 

(5.1 lc) 

We recall an earlier remark that ,uj is the mass-density; therefore, the mass of the jth 
interval is given by 

mj =pj Aa. (5.12) 

Thus, using (5.12), the two schemes (5.10) and (5.11) are the same. 

6. SHOCKS 

So far what we have described is valid for continuous flows. We can, however, 
extend this method to treat flows where shocks occur, by the following simple device. 

We model a shock as an inelastic collision between two fluid particles. When one 
particle (say X,) overtakes another (X,) and collides with it, we replace them by one 
averaged particle, X’, with velocity and height chosen so that mass and momentum 
are conserved in the new interval, I’, in Fig. 6.1~. 

0 
11 

m’=m2+ m3 
L’=L*+L, 14 

Xl X’ X4 

FIGURE 6.1. (a) Points X, and X, before a continuous-time collision; (b) Points X2 and X, during a 
continuous-time collision; (c) points X, and X, after a continuous-time collision. 
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After a collision has occurred, X, and X, are replaced by X’. Since the outer boun- 
daries of I, and I, do not move during a collision there is no transfer of mass or 
momentum to the noncolliding particles, X, and X, in Fig. 6.lb, c. This leads to the 
following equations for conservation of mass and momentum (where primed quan- 
tities refer to after collision values), 

X’=Xz=X3, (6.la) 

L'=L,+L,, (6.lb) 

m'=m,+m, Conservation of Mass, (6.1~) 

m'U'=m,U,+m,U, Conservation of Momentum, (6. Id) 

H'=m'/L'. (6.le) 

We note that when such a collision occurs the total number of fluid markers is 
decreased by one. This is consistent with the fact that a shock is a dissipative process 
that results in a loss of information. Thus we require less resolution in those areas 
where a shock has passed through. 

We also remark that one can show (see Appendix) that the total energy decreases 
after such a collision has occurred. Decreasing energy is the shallow water equivalent 
of decreasing entropy in gas dynamics. 

In actual calculations, and for stability considerations (see Section 7), we cannot 
allow two particles to actually collide. We therefore consider a collision to take place 
when two particles (X, and X, in Fig. 6.2) get closer than some preassigned distance, 
d. When this happens, we replace X, and X, by one averaged point X’, with velocity 
and height chosen so that mass and momentum are conserved in the new interval I’, 
and its immediate neighbors X, and X4. A natural choice for the collision distance d 
will be described in the next section. 

We need to determine the position of the new point X’ and its velocity U’ and 
mass m'. Since the lengths of I, and Z4 (L,, L4) are changed by moving X, and X, to 
X’, we therefore change m, and m4 to ml and m;. We want the height of H, and H, 
to remain the same after the collision, and therefore we adjust ml, Ui, m;, U;, accor- 
dingly, to conserve total mass and momentum, as well as the height of noncolliding 
particles. 

FIG. 6.2. Transfer of fluid mass during a discrete-time collision. Points X, and X, collide and arc 
merged into X’. 
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The location of X’ is arbitrarily chosen to be a weighted average of X, and X,. 
Our particular choice, based on numerical experiments, will be described in Section 8. 

We arrive at the following system of equations to solve 

Conservation of height of non colliding particles 

H;=H,, (6.2a) 

H;=H,. (6.2b) 

Conservation of (total) mass 

m~+m’+m~=m,+m,+m,+m,. 

Conservation of (total) momentum 

m~U~+m’U’$m~U~=m,U,+m,U,+m,U,-tm,U,. 

(6.3) 

(6.4 ) 

Create new particle at weighted average of colliding particles 

X’=yX,+(l -y)X,. (6.5) 

Mass and Momentum after Collision 

The solution of Eqs. (6.2)-(6.5) for the mass and momentum after a collision has 
occured (ml, m’, m:, U;, U’, U:) is not unique. We present a particular, plausible 
solution constructed according to the following principles. 

When X, and X, are merged into a new point X, < X’ < X,, the boundaries of the 
intervals Zi and Z; are pulled closer to X’, thereby increasing the lengths and Zi and Z; 
(L;, L;). We then adjust the masses m; and rn; by adding some of the mass from I,, 
to Z; and Z;. Therefore look for solutions of (6.2)-(6.5) of the form 

m;=m,+am,, (6.6a) 

m;=m,+Pm,, (6.6b) 

m’=(l-a)m,+(l-p)m,. (6.6c) 

Accordingly, since the new intervals Z;, Z; represent some of the fluid formerly in I, 
and I,, which had different velocities, we adjust U; and U; to account for this. 

u; = m,U,+am,U, 
m,+am, ’ 

(6.7a) 

u; = m4 U4 + Pm3 u, 
m,+Bm, ’ 

(6.7b) 

(6.7~) 
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Conservation of mass and momentum. Before determining a and /3, we show that 
for arbitrary a and /I the total mass and momentum are conserved. 

Conservation of mass. By Eq. (6.6) we have 

m~+m’+m~=(m,+am,>+[(1-a)m,+(l-/3)m,]+(m,+bm,) 

=m,+m,+m,+m,. 

Conservation of Momentum. By Eq. (6.7) we have 

ml U; + m’U’ + m; U; = (m, + amJ i 
m, U, + am, U, 

m, t amI 1 

+ 1(1-a)m,+(l-P>m,)l[ “~Ia!~~,“‘:i~~~i~~u3 J 
2 

+ Cm4 + Pm,) [ 
m4 U4 + Pm3 U3 

m4 + Pm3 1 
= m,U,+m,U,$m,U,fm,U,. 

Conservation of height of noncolliding particles. We now determine a and p by 
using Eq. (6.2) (conservation of height of noncolliding particles). 

From Fig. 6.2 it can be seen that am, is the portion of m, that is transferred from 
I, to I,, while pm3 is the portion of m3 that is transferred from I, to I, when X, and 
X3 are merged to X’. We choose a and p so that just enough mass is transferred to Z; 
and Zi to keep the heights Hi and H: unchanged, i.e., Hi = H, and Hi = H,. 

am, = (AL,) H, = 
x/+x, x2 +x, 

2 - 2 11 
fir, 

,8m3=(AL4)H4= x3ix4 -x’lx4 H,, 

so 

pm,= (x3;“‘) H4. (6.8b) 

Thus the formulas for a and /I and hence the other quantities ml, m’, rn;, U; , U’, U; 
are determined once X’ is found. 

The formula for X’ is given by Eq. (6.5) somewhat arbitrarily. Several variants of 
(6.5) were tried, where we chose X’ to satisfy a conservation of center of mass 
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equation, but that approach led to a quadratic equation for X’ which, when tried 
numerically, did not always have real solutions nor produce better results so we 
stayed with the simpler formula (6.5). Again, the particular choice of y in (6.5) will 
be presented in Section 8. 

We now combine the 
shallow water equations. 

7. NUMERICAL METHOD 

foregoing elements into a numerical method for the 1-D 

The spatially discrete equations in Sections 2 and 3 are 

mj = Hj 4+1 
-xj-l 

i 2 ) 

dX. 
J= q, 
dt 

2<j<N-1. 

(7.la) 

(7.lb) 

We temporally discretize Eq. (7.1) by using a second order Runga-Kutta scheme 

(y;+l = U; + (At)& [(If-,)* - (Hj”+,)*], 
J 

(7.2a) 

$y+’ = xj” + (At) q”, (7.2b) 

IF+ ’ = 2mj/(fT,‘: - j$‘:). 
J (7.2~) 

{[(H,“-,)* - (Hj”+,)*] + I(@‘?,‘)‘- (I?~+‘,‘)‘], (7.3a) 

x;+’ (7.3b) 

Hj”+’ = 2mj/(Xy:: - Xjni-:). (7.3c) 

Note that OJ”’ and UJ”’ are used to update XJ”‘, respectively. Nevertheless, the 
scheme is explicit because 07’ ’ and Uyt ’ have just been evaluated. Also, ~~” can 
be used in (7.3b) rather than 8;” since this quantity is already computed in 
Eq. (7.3a). 

The algorithm is now as follows: 

Step 1. Pick N points on the line, with initial velocity Uj and height Hj. This 
gives the initial mass of each interval Ij, 

my = Lj’Hy = (q+ , - qP ,) Hy/2. 

Then store my. 



ONE DIMENSIONAL SHALLOW WATER EQUATIONS 255 

Step 2. Find an intermediate velocity 0;” by using (7.2a). Move points with 
this intermediate velocity to $“, (7.2b), and then calculate intermediate heights 
fiJ” ’ by using (7.2~). 

Step 3. Calculate new velocity Uy+ ’ using information from the previous time 
step and from the computed correction terms (7.2a)-(7.2c). 

Step 4. Move points to new locations XT+’ by (7.3b). 

Step 5. Determine new height Hj” +I by using (7.3~). 

Step 6. Repeat Steps 2-5 as long as desired. 

This algorithm is valid for points not adjacent to the boundary and only for 
smooth regions of the flow. However, we must modify the algorithm to account for 
boundary points and shocks. This will be done below. 

Before discussing shocks and a boundary treatment, there is another question, that 
of stability. It is well known, in finite difference calculations for hyperbolic equations, 
that small perturbations can grow if the Courant-Friedrichs-Lewy (CFL) condition 
is violated [ 121, i.e., At/Ax < l/c, where c is the wave speed appropriate to the 
problem. For the shallow water equations c = fl. Let c,,, = max, ~j(n \/gHj so 
that, for a fixed At, we need 

AX > c,,,W). (7.4) 

Since our mesh is variable we must examine the CFL condition at each point and 
therefore we need 

(7.5) 

We now have a lower bound on how close two points can get. This forces us to 
modify the algorithm. After we move the points to their new locations, since they are 
stored in increasing order (Xi < X, < X, < ..e), we sweep through the array 
containing their locations and see if any two violate the CFL condition (7.5). We 
must now restore the CFL condition. Since we treat shocks as collisions between 
particles we cannot, computationally, allow these particles to get closer than the CFL 
condition allows. If two particles are found to violate the CFL condition, we remove 
them and replace them by one averaged particle according to the procedure described 
in the previous section on shocks. We thus reduce the number of computation points 
by one and move all the stored quantities down one storage location. In this manner 
we are able to handle shocks while, at the same time, ensure the stability of the 
computation. We note that this procedure leads to a loss of resolution due to the 
removal of mesh points. This is in fact what actually happens when a shock passes 
by. After a shock passes, energy is dissipated and the amount of information required 
to specify the flow is reduced. This smoothing is manifested by the fact that we now 
need fewer fluid markers to describe the flow behind a shock. This is consistent with 
our procedure of treating shocks as collisions between points and merging them into 

581/53/2-4 
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one averaged point The averaging provides the necessary energy dissipation, and the 
reduction in the number of fluid markers is consistent with the loss of information. 

Boundary treatment-Infinite domain. The method as described above is valid 
for points interior of the fluid. From a practical point of view, we can only model the 
region of interest by a finite number of points. Therefore, for an infinite domain, we 
can only consider a bounded region of fluid. Since the points are indexed in 
increasing order, the left boundary is the point a < X, and the right boundary is 
!J > X,. (See Fig. 3.1.) We assume that the region of interest is near x = 0 and that a 
and b are sufficiently far away from x = 0, so that the waves produced at x = 0 will 
not reach the artificial boundaries for a large number of iterations. At that point 
when the waves produced near x = 0 are reflected from the artificial boundaries the 
computation is no longer valid. 

The equations for the points X, and X, are given in Section 4. Since the points X, 
and X, move, in order to avoid artificial boundary reflections, we need to move the 
boundaries X = a and X = b at each time step. We present the analysis for the left 
boundary, but the argument is similar for the right boundary. 

Consider the interval I,. (See Fig. 3.1.) If a were fixed and points X, and X, 
moved, then the length of I, would change. Since the mass of 1i must be constant, the 
height H, would also change. This would set up artificial waves propagating into the 
fluid. This can be avoided by keeping the lengths and therefore the height of I, 
constant. We accomplish this by moving a with the same velocity as X,. 

a “+’ =a” + (At) Cl:+‘, 

b ‘+’ =a” + (At) U,y.+‘. 

This has the effect of computing over a moving region. 

(7.6a) 

(7.6b) 

Fixed domain. If we are actually interested in a fixed, bounded region of fluid, 
say -co < a < x < b < co, we have to ensure that our fluid markers are confined to 
the bounded region, i.e., a < Xi < b, i = l,..., N. In this case the boundaries are fixed 
so an = a0 and b” = b”. At each time step we check the points X, and X, to see if 
they are within CFL of their respective boundaries. If they are, we assume that the 
particles have had an elastic collision with the wall, and we reverse their velocities. If 
a particle passes out of the region during a time step, we reflect it back in and reverse 
its velocity. 

8. RESULTS 

In this section we present some numerical results for the problem of the breaking 
of a dam. The initial conditions are illustrated in Fig. 8.1. 

At time t = 0 the dam is suddenly destroyed and the problem is to determine the 
subsequent motion of the water for x and t. 

Note that this problem is analogous to the Riemann problem of one-dimensional 
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FIG. 8. I. Initial conditions for Dam-Breaking problem. 

gas dynamics (see Courant and Friedrichs [3]). The initial conditions we have used 
are those for which the exact solution is provided in Stoker [ 141, 

u(x, 0) = 0.2667 m/set, 

= 1.6 mlsec, 

h(x, 0) = 10.8 m, 

= 1.8 m, 

x < 0, 

x > 0. 

x < 0, 

x > 0. 

(8.1~1) 

(8.lb) 

The exact solution consists of four regions (see Fig. 8.2). A shock wave (or bore) 
propagates into the constant state (region IV) with velocity 10.7 m/set. Behind the 
shock (region III) is a simple wave where the height is constant. Region II is a 
rarefaction wave which connects the constant height state (region III) with the 
undisturbed fluid in region I. 

At any time the height of the fluid is 

h(x, t) = 10.8 m, x > 10.7t, 

= 4.716 m, 0.45t < x < 10.7t, 

1 
=- 

88.2 
-10.02t < x < 0.45t, 

= 10.8 m, x < - 10.02t. 

In Figs. 8.3 we present the results of our calculations for the following parameters: 
At = 0.2, AX = 5 meters (initially), and the merging parameter d = 2 meters. We 

Ii------\.\\.--I 
I II III IV 

v 

FIG. 8.2. Exact solution of Dam-Breaking problem. 
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FIG. 8.3. Computed solutions for Dam-Breaking problem for (a) t = 0 set, (b) t = 100 set, 
(c) t = 200 set, (d) t = 300 set, (e) t = 400 set, (f) t = 450 sec. Exact solution (in dark lines) superim- 
posed on computed solution at each fluid marker. 
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follow the shock for 5 km and plot every 100 set (i.e., 500 iterations). In the last plot 
we superimpose the exact solution (dark X’s) on top of the computed solution. 

One feature of our solution is that the shock and rarefaction waves are sharp and 
in the right place. As shown in Figs. 8.3, the method gives particularly sharp fronts 
and very exact shock speeds. There is a slight overshoot in the height immediately 
behind the shock and there are small oscillations in the constant state (region III) 
near the rarefaction wave. These oscillations are small, however, and remain small 
throughout the calculation. 

An interesting observation is that there is a region behind the shock in which there 
are no fluid markers. In this region the flow is constant. It is observed from numerical 
experiment that the distribution of points in the constant state (region III) and the 
presence of large oscillations immediately behind the shock is sensitive to the merging 
procedure. Since we do not use an artificial viscosity term of the von 
Neuman-Richtmyer type [ 121 the only dissipation we have, is introduced by the 
merging procedure (see Appendix). It is important that we pick the new point X’ so 
that enough dissipation is introduced to smooth out the oscillations behind the shock. 
In the author’s previous work [l] this was not done entirely satisfactorily and there 
were oscillations behind the shock. In that work we used a first order Euler difference 
and X’ was placed at the center of mass of the two colliding points, i.e., 

X’ = mkXk + mkt 1 

rrlk + m,+p*+’ . 

In the present work we have switched to a second order Runge-Kutta type scheme 
and have changed the location of X’. We now place X’ upstream of the shock, i.e., 

where y = 0 for a right propagating shock and y = 1 for a left propagating shock. 
This combination of using a second order method plus the new merging procedure 
seems to introduce the right amount of dissipation to get rid of the oscillations 
immediately behind the shock. The way it does this is by bunching more points into 
the back part of the constant state while leaving very few points in the front part, 
immediately behind the shock. The result is, that this region is represented by very 
few points, and is thus constant. Again, this is consistent with the notion of a shock 
as a smoothing process. Therefore, once, a shock passes, you need less points to 
represent the flow. The reason that this particular choice of X’ in combination with a 
second order method is needed to achieve these results is still unclear. 

We note that the same problem has been solved by Marshall and Mendez ] lo] 
using the Glimm-Chorin Random Choice method. In their solution the shock wave 
and depression (rarefraction) wave are computed with almost infinite resolution. The 
location of the shock and depression wave, however, is not exact. The constant state 
in [IO] appears, exact, while the depression wave is very close to the exact solution. 

In our solution, the location of the shock and depression wave appears to agree 
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with the theoretical solution very closely. The depression wave is also very close. The 
constant state is not constant, but (in a region not adjacent to the shock) oscillates 
about the correct height with small oscillations that remain small in time. It should be 
pointed out that the random choice method uses the exact solution to the Riemann 
problem in its numerical construction of an approximate solution. Thus it makes use 
of the exact solution of the Riemann problem to solve the Riemann problem as a test 
case. This criticism does not apply to the present method. 

9. CONCLUSION 

We have presented a Lagrangian method for the numerical solution of the shallow 
water equations in one space dimension based on a Voronoi mesh. Initial results for 
the Dam-Breaking problem, show the method to be promising. By introducing a 
conservative merging procedure for colliding particles we are able to handle the weak 
shocks that occur in shallow water type problems. 

This method, however, was originally developed by the author to handle problems 
dealing with flows on a rotating sphere that arise in atmospheric modelling. The 
details of the 2-D spherical method will be presented in a subsequent paper 121. We 
briefly mention some of the features of the 1-D method that have to be modified in a 
2-D treatment. 

In 2-D it is possible that points can be brought close enough to collide and trigger 
the merging algorithm, without shocks being present, i.e., in strong shearing flows. 
Therefore, we will introduce a simple test so that points are only merged when the 
collisions are compressive and not when they are caused by shearing. 

Also, in 2-D the Voronoi cell boundaries are not strictly Lagrangian, even though 
the fluid markers are, and this introduces a flux across the cell boundaries that does 
not occur in I-D. 

Finally, the grid construction and its associated data structure are considerably 
more complicated in 2-D, than they are in the trivial 1-D case. An efficient 
construction of the Voronoi mesh on a sphere along with its associated data 
structure, will also be given. 

APPENDIX 

Energy Relations. In this section we discuss the energy relations for the scheme. 
Specifically, we show that the method conserves energy in the absence of shocks, and 
that energy decreases in the presence of shocks. This analysis will be limited to the 
discrete-space continuous-time version of the method, however. 

Following the notation of Section 5, the discrete equations can be written in the 
form 
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Hi+, -z-C, =. 
2Aa 1 ’ 

pH (x k 
k+l -xk-l) =p(ak) 

2Aa 
9 

where ak = kda, ~(a) is the mass-density function and p = fluid density. 

Conservation of Energy. Let 

u,= a; k 
-. 

Then (A.2) implies 

aHk x,+1 -xk-l u 

p at 
-“k-, =o 

2Aa +PH, k+;da . 

Multiply (A.4) by H, and use (A.2) again 

aHk 2 uk+l-uk-l =o 
dak) at + Pffk 2Aa ’ 

(A-1) 

64.2) 

G4.3) 

G4.4) 

(A4 

Now multiply (A.l) by U, Au and sum over k, 

++pgrhLi, 
Hi+, -Hi-, 1 =. 

k 2Aa 
9 W-6) 

p(uk) AaU: -+pg,Aa 
U k+l-Uk-L Hz=-J 

2a 1 k ’ (A.71 

Using (AS) and (A.7) we get 

1 y +,u(ak) U: + $r(Uk) Hk Aa = 0. 1 
Therefore 

E=xAa +,u(ak)U:+$,@k)Hk 
k [ 1 

=c 
k 

+?l,U+l,H, , 1 

(A.81 

G4.9) 

is conserved. 
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Shocks. We assume that particles X, and X,, , actually collide at time t = T, 
therefore X, = X, + , . We then delete the point K + 1 and lower all subsequent 
indices by 1. Specifically, let 

X;=Xkr k<K, 

=xk+l, k > K, 
(A.lO) 

P’h) = iu(%), k < K, 

=Ill(qJ +P@,+J k = K, (A.1 1) 

= iu(%+ 11, k > K, 

u; = u,, k < K, 

= [ill& tPk+l~k+*l/P’~~k)~ k = K, (A. 12) 

= Uktl? k > K. 

The formula for H’ can be derived from (A.2). The result is 

H;=H,, k < K, 

_Hk(Xk-Xk-,)+Hk+,(Xk+2-Xk) 
(x,-X,-1)+(x,+2-X/J ’ 

k = K, (A.13) 

=fJ!f+,> k > K. 

Note that 

We want to show that the energy is decreased by this procedure. First consider the 
kinetic energy 

-Aa 

2cuK +PK+ I> 
PxPuK+ I (UK - UK, 1)’ < 0. (A. 14) 

Next, consider the potential energy 

%t - Em = ~01;H;-~,H,-~,,,H,+,). (A.15) 
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Recall (Section 5) that ,uu, da = pH,L,, where 

x L,= k+’ -Xk-I 
2 ' 

and also that 

H;L;,=H,L,+H,+,LK+,r 

Lb=L,fL,+,. 

Therefore 

Ebot -E,,,=~(LkH:‘-LKH~-L,+,H:,,). 

The same manipulations as in the kinetic energy case show that 

-Pi? L&K+, E;ot - Em = - 
2 L,+L,+t, (H, - HK + I>’ < O. 

(A.16) 

(A.17) 

We remark that it has been verified numerically that similar results hold for the 
discrete-time discrete-space case, i.e., energy decreases when we merge points 
according to the procedure described in Section 6. 
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